Learning discriminative activated simplices for action recognition

Abstract

We address the task of action recognition from a sequence of 3D human poses. This is a challenging task firstly because the poses of the same class could have large intra-class variations either caused by inaccurate 3D pose estimation or various performing styles. Also different actions, e.g., walking vs. jogging, may share similar poses which makes the representation not discriminative to differentiate the actions. To solve the problems, we propose a novel representation for 3D poses by a mixture of Discriminative Activated Simplices (DAS). Each DAS consists of a few bases and represent pose data by their convex combinations. The discriminative power of DAS is firstly realized by learning discriminative bases across classes with a block diagonal constraint enforced on the basis coefficient matrix. Secondly, the DAS provides tight characterization of the pose manifolds thus reducing the chance of generating overlapped DAS between similar classes. We justify the power of the model on benchmark datasets and witness consistent performance improvements.

Publication
In Thirty-first AAAI Conference on Artificial Intelligence
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Click the Slides button above to demo Academic’s Markdown slides feature.

Supplementary notes can be added here, including code and math.